SEARCH VEGSOURCE:

 

 

Follow Ups | Post Followup | Back to Discussion Board | VegSource
See spam or
inappropriate posts?
Please let us know.
  




From: TSS ()
Subject: SCRAPIE USA REPORT UPDATE AS AT NOVEMBER 30, 2005
Date: January 12, 2006 at 11:29 am PST

SCRAPIE USA REPORT UPDATE AS AT NOVEMBER 30, 2005

Infected and Source Flocks

As of November 30, 2005 there were 95 scrapie infected and source flocks (Figure 3). There were 2 new infected and source flocks reported in November (Figure 4) with a total of 12 flocks reported for FY 2006 (Figure 5). The total infected and source flocks that have been released in FY 2006 are 16 (Figure 6), with 9 flocks released in November. The ratio of infected and source flocks released to newly infected and source flocks for FY 2006 = 1.33 : 1. In addition, as of November 30, 2005, 67 scrapie cases have been confirmed and reported by the National Veterinary Services Laboratories (NVSL), of which 7 were RSSS cases (Figure 7). This includes 57 newly confirmed cases in November 2005 (Figure 8). Fifteen cases of scrapie in goats have been reported since 1990 (Figure 9). The last goat case was reported in May 2005. New infected flocks, source flocks, and flocks released for FY 2006 are depicted in Figure 10. New infected and source statuses from 1997 to 2006 are depicted in Chart 3.


Regulatory Scrapie Slaughter Surveillance (RSSS) +

RSSS started April 1, 2003. It is targeted slaughter surveillance program which is designed to identify infected flocks for clean-up. Samples have been collected from 67,840 sheep since April 1, 2003, of which results have been reported for 64,034. Samples have been submitted from 81 plants. There have been 215 NVSL confirmed positive sheep since the beginning of RSSS. In FY 2006 samples have been collected from 5,339 sheep and there have been 7 NVSL confirmed positive cases through November 2005. Face colors of FY 2006 confirmed positives are 6 black and 1 mottled. During November 2005, 2,429* animals were sampled and test results were reported on 3088 samples. Five confirmed positives were reported by NVSL in November 2005. Cumulative regional sample collection numbers are shown in Figure 11 and are based upon the State in which the animal was tagged. The number of RSSS animals collected with traceable identification for FY 2005 by month, by region where collected is shown in Figure 12. A retrospective 6 month rolling average of the % positive tested black-faced sheep sampled at slaughter is shown in Figure 13.


...snip


full text;


http://www.aphis.usda.gov/vs/nahps/scrapie/monthly_report/monthly-report.html


TSS


============================
PREVIOUS MONTHS REPORTS
============================


Infected and Source Flocks

As of August 31, 2005, there were 115 scrapie infected and source flocks (figure 3). There were 3 new infected and source flocks reported in August (Figure 4) with a total of 148 flocks reported for FY 2005 (Figure 5). The total infected and source flocks that have been released in FY 2005 are 102 (Figure 6), with 5 flocks released in August. The ratio of infected and source flocks released to newly infected and source flocks for FY 2005 = 0.69 :
1. In addition, as of August 31, 2005, 574 scrapie cases have been confirmed and reported by the National Veterinary Services Laboratories (NVSL), of which 122 were RSSS cases (Figure 7). This includes 55 newly confirmed cases in August 2005 (Figure 8). Fifteen cases of scrapie in goats have been reported since 1990 (Figure 9). The last goat case was reported in May 2005.

snip...

full text ;

http://www.aphis.usda.gov/vs/nahps/scrapie/monthly_report/monthly-report.html


SCRAPIE USA JULY 2005 UPDATE

AS of July 31, 2005, there were 120 scrapie infected soure flocks (figure 3). There were 16 new infected and source flocks reorted in July (Figure 4) with a total of 143 flocks reported for FY 2005 (Figure 5). The total infected and source flocks that have been released in FY 2005 are 89 (Figure 6), with 8 flocks released in July. The ratio of infected and source flocks released to newly infected and source flocks for FY = 0.62 : 1. IN addition, as of July 31, 2005, 524 scrapie cases have been confirmed and reported by the National Veterinary Services Laboratories (NVSL), of which 116 were RSSS cases (Figure 7). This includes 76 newly confirmed cases in July 2005 (Figure 8). Fifteen cases of scrapie in goats have been reported since 1990 (Figure 9). The last goat case was reported in May 2005. ...........

snip...

http://www.aphis.usda.gov/vs/nahps/scrapie/monthly_report/monthly-report.html


SCRAPIE USA JUNE 2005 UPDATE


AS of June 30, 2005, there were 114 scrapie infected and source flocks
(Figure 3). There were 14 new infected and source flocks reported in June
(Figure 4) with a total of 123 flocks reported for FY 2005 (Figure 5).


snip...


In addition, as of June 30, 2005, 448 scrapie cases have been confirmed and
reported by the National Veterinary Services Laboratories (NVSL), of which
106 were RSSS cases (Figure 7). This includes 81 newly confirmed cases in
June 2005 (Figure 8). Fifteen cases of scrapie in goats have been reported
since 1990 (Figure 9). The last goat case was reported in May 2005.


snip...end


http://www.aphis.usda.gov/vs/nahps/scrapie/monthly_report/monthly-report.html


From: TSS ()
Subject: SCRAPIE USA UPDATE MARCH - JUNE 2005
Date: August 24, 2005 at 7:03 pm PST

SCRAPIE USA MONTHLY REPORT 2005

AS of March 31, 2005, there were 70 scrapie infected source flocks (Figure
3). There were 11 new infected and source flocks reported in March (Figure
4) with a total of 51 flocks reported for FY 2005 (Figure 5). The total
infected and source flocks that have been released in FY 2005 are 39 (Figure
6), with 1 flock released in March. The ratio of infected and source flocks
released to newly infected and source flocks for FY 2005 = 0.76 : 1. IN
addition, as of March 31, 2005, 225 scrapie cases have been confirmed and
reported by the National Veterinary Services Laboratories (NVSL), of which
53 were RSSS cases (Figure 7). This includes 57 newly confirmed cases in
March 2005 (Figure 8). Fourteen cases of scrapie in goats have been reported
since 1990 (Figure 9). The last goat cases was reported in January 2005. New
infected flocks, source flocks, and flocks released or put on clean-up plans
for FY 2005 are depicted in Figure 10. ...

FULL TEXT ;

http://www.aphis.usda.gov/vs/nahps/scrapie/monthly_report/monthly-report.html


Published online before print October 20, 2005

Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0502296102
Medical Sciences

A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes

( sheep prion | transgenic mice )

Annick Le Dur *, Vincent Béringue *, Olivier Andréoletti , Fabienne Reine *, Thanh Lan Laï *, Thierry Baron , Bjørn Bratberg ¶, Jean-Luc Vilotte ||, Pierre Sarradin **, Sylvie L. Benestad ¶, and Hubert Laude *
*Virologie Immunologie Moléculaires and ||Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway


Edited by Stanley B. Prusiner, University of California, San Francisco, CA, and approved September 12, 2005 (received for review March 21, 2005)

Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.

--------------------------------------------------------------------------------

Author contributions: H.L. designed research; A.L.D., V.B., O.A., F.R., T.L.L., J.-L.V., and H.L. performed research; T.B., B.B., P.S., and S.L.B. contributed new reagents/analytic tools; V.B., O.A., and H.L. analyzed data; and H.L. wrote the paper.

A.L.D. and V.B. contributed equally to this work.

To whom correspondence should be addressed.

Hubert Laude, E-mail: laude@jouy.inra.fr

www.pnas.org/cgi/doi/10.1073/pnas.0502296102


http://www.pnas.org/cgi/content/abstract/0502296102v1

12/10/76
AGRICULTURAL RESEARCH COUNCIL
REPORT OF THE ADVISORY COMMITTE ON SCRAPIE
Office Note
CHAIRMAN: PROFESSOR PETER WILDY

snip...

A The Present Position with respect to Scrapie
A] The Problem

Scrapie is a natural disease of sheep and goats. It is a slow
and inexorably progressive degenerative disorder of the nervous system
and it ia fatal. It is enzootic in the United Kingdom but not in all
countries.

The field problem has been reviewed by a MAFF working group
(ARC 35/77). It is difficult to assess the incidence in Britain for
a variety of reasons but the disease causes serious financial loss;
it is estimated that it cost Swaledale breeders alone $l.7 M during
the five years 1971-1975. A further inestimable loss arises from the
closure of certain export markets, in particular those of the United
States, to British sheep.

It is clear that scrapie in sheep is important commercially and
for that reason alone effective measures to control it should be
devised as quickly as possible.

Recently the question has again been brought up as to whether
scrapie is transmissible to man. This has followed reports that the
disease has been transmitted to primates. One particularly lurid
speculation (Gajdusek 1977) conjectures that the agents of scrapie,
kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of
mink are varieties of a single "virus". The U.S. Department of
Agriculture concluded that it could "no longer justify or permit
scrapie-blood line and scrapie-exposed sheep and goats to be processed
for human or animal food at slaughter or rendering plants" (ARC 84/77)"
The problem is emphasised by the finding that some strains of scrapie
produce lesions identical to the once which characterise the human
dementias"

Whether true or not. the hypothesis that these agents might be
transmissible to man raises two considerations. First, the safety
of laboratory personnel requires prompt attention. Second, action
such as the "scorched meat" policy of USDA makes the solution of the
acrapie problem urgent if the sheep industry is not to suffer
grievously.

snip...

76/10.12/4.6

http://www.bseinquiry.gov.uk/files/yb/1976/10/12004001.pdf


Like lambs to the slaughter
31 March 2001
Debora MacKenzie
Magazine issue 2284
What if you can catch old-fashioned CJD by eating meat from a sheep infected
with scrapie?
FOUR years ago, Terry Singeltary watched his mother die horribly from a
degenerative brain disease. Doctors told him it was Alzheimer's, but
Singeltary was suspicious. The diagnosis didn't fit her violent symptoms,
and he demanded an autopsy. It showed she had died of sporadic
Creutzfeldt-Jakob disease.

Most doctors believe that sCJD is caused by a prion protein deforming by
chance into a killer. But Singeltary thinks otherwise. He is one of a number
of campaigners who say that some sCJD, like the variant CJD related to BSE,
is caused by eating meat from infected animals. Their suspicions have
focused on sheep carrying scrapie, a BSE-like disease that is widespread in
flocks across Europe and North America.

Now scientists in France have stumbled across new evidence that adds weight
to the campaigners' fears. To their complete surprise, the researchers found
that one strain of scrapie causes the same brain damage in ...

The complete article is 889 words long.

full text;

http://www.newscientist.com/article.ns?id=mg16922840.300

Neurobiology
Adaptation of the bovine spongiform encephalopathy agent to primates and
comparison with Creutzfeldt- Jakob disease: Implications for human health
Corinne Ida Lasmézas*,, Jean-Guy Fournier*, Virginie Nouvel*, Hermann Boe*,
Domíníque Marcé*, François Lamoury*, Nicolas Kopp, Jean-Jacques Hauw§, James
Ironside¶, Moira Bruce, Dominique Dormont*, and Jean-Philippe Deslys*
* Commissariat à l'Energie Atomique, Service de Neurovirologie, Direction
des Sciences du Vivant/Département de Recherche Medicale, Centre de
Recherches du Service de Santé des Armées 60-68, Avenue du Général Leclerc,
BP 6, 92 265 Fontenay-aux-Roses Cedex, France; Hôpital Neurologique Pierre
Wertheimer, 59, Boulevard Pinel, 69003 Lyon, France; § Laboratoire de
Neuropathologie, Hôpital de la Salpêtrière, 83, Boulevard de l'Hôpital,
75013 Paris, France; ¶ Creutzfeldt-Jakob Disease Surveillance Unit, Western
General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; and
Institute for Animal Health, Neuropathogenesis Unit, West Mains Road,
Edinburgh EH9 3JF, United Kingdom

Edited by D. Carleton Gajdusek, Centre National de la Recherche
Scientifique, Gif-sur-Yvette, France, and approved December 7, 2000
(received for review October 16, 2000)


Abstract

There is substantial scientific evidence to support the notion that bovine
spongiform encephalopathy (BSE) has contaminated human beings, causing
variant Creutzfeldt-Jakob disease (vCJD). This disease has raised concerns
about the possibility of an iatrogenic secondary transmission to humans,
because the biological properties of the primate-adapted BSE agent are
unknown. We show that (i) BSE can be transmitted from primate to primate by
intravenous route in 25 months, and (ii) an iatrogenic transmission of vCJD
to humans could be readily recognized pathologically, whether it occurs by
the central or peripheral route. Strain typing in mice demonstrates that the
BSE agent adapts to macaques in the same way as it does to humans and
confirms that the BSE agent is responsible for vCJD not only in the United
Kingdom but also in France. The agent responsible for French iatrogenic
growth hormone-linked CJD taken as a control is very different from vCJD but
is similar to that found in one case of sporadic CJD and one sheep scrapie
isolate. These data will be key in identifying the origin of human cases of
prion disease, including accidental vCJD transmission, and could provide
bases for vCJD risk assessment.


http://www.pnas.org/cgi/content/full/041490898v1


The EMBO Journal, Vol. 19, No. 17 pp. 4425-4430, 2000
© European Molecular Biology Organization

Evidence of a molecular barrier limiting
susceptibility of humans, cattle and sheep to
chronic wasting disease

G.J. Raymond1, A. Bossers2, L.D. Raymond1, K.I. O?Rourke3,
L.E. McHolland4, P.K. Bryant III4, M.W. Miller5, E.S. Williams6, M.
Smits2
and B. Caughey1,7

1NIAID/NIH Rocky Mountain Laboratories, Hamilton, MT 59840,
3USDA/ARS/ADRU, Pullman, WA 99164-7030, 4USDA/ARS/ABADRL,
Laramie, WY 82071, 5Colorado Division of Wildlife, Wildlife Research
Center, Fort Collins, CO 80526-2097, 6Department of Veterinary Sciences,
University of Wyoming, Laramie, WY 82070, USA and 2ID-Lelystad,
Institute for Animal Science and Health, Lelystad, The Netherlands
7Corresponding author e-mail: bcaughey@nih.gov Received June 7, 2000;
revised July 3, 2000; accepted July 5, 2000.

Abstract

Chronic wasting disease (CWD) is a transmissible
spongiform encephalopathy (TSE) of deer and elk,
and little is known about its transmissibility to other
species. An important factor controlling
interspecies TSE susceptibility is prion protein (PrP)
homology between the source and recipient
species/genotypes. Furthermore, the efficiency with which
the protease-resistant PrP (PrP-res) of one
species induces the in vitro conversion of the normal PrP
(PrP-sen) of another species to the
protease-resistant state correlates with the cross-species
transmissibility of TSE agents. Here we
show that the CWD-associated PrP-res (PrPCWD) of cervids
readily induces the conversion of recombinant cervid PrP-sen
molecules to the protease-resistant state in accordance
with the known transmissibility of CWD between cervids. In contrast,
PrPCWD-induced conversions of human and bovine PrP-sen were
much less efficient, and conversion of ovine PrP-sen was
intermediate. These results demonstrate a barrier at the
molecular level that should limit the susceptibility of these non-cervid
species to CWD.

snip...

Clearly, it is premature to draw firm conclusions about CWD
passing naturally into humans, cattle and sheep, but the present
results suggest that CWD transmissions to humans would be as
limited by PrP incompatibility as transmissions of BSE or sheep
scrapie to humans. Although there is no evidence that sheep
scrapie has affected humans, it is likely that BSE has caused variant
CJD in 74 people (definite and probable variant CJD cases to
date according to the UK CJD Surveillance Unit). Given the
presumably large number of people exposed to BSE infectivity,
the susceptibility of humans may still be very low compared with
cattle, which would be consistent with the relatively inefficient
conversion of human PrP-sen by PrPBSE. Nonetheless, since
humans have apparently been infected by BSE, it would seem prudent
to take reasonable measures to limit exposure of humans
(as well as sheep and cattle) to CWD infectivity as has been
recommended for other animal TSEs.

snip...

http://www.emboj.org/current.shtml

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to
nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of
sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that
were exposed to the infectious agents only by their nonforced consumption of
known infectious tissues. The asymptomatic incubation period in the one
monkey exposed to the virus of kuru was 36 months; that in the two monkeys
exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months,
respectively; and that in the two monkeys exposed to the virus of scrapie
was 25 and 32 months, respectively. Careful physical examination of the
buccal cavities of all of the monkeys failed to reveal signs or oral
lesions. One additional monkey similarly exposed to kuru has remained
asymptomatic during the 39 months that it has been under observation.


PMID: 6997404


http://www.ncbi.nlm.nih.gov/entrez/query.fcgicmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract

Transmission of Creutzfeldt-Jakob disease by handling of dura mater.
The Lancet Volume 341(8837) January 9, 1993 pp
123-124
Weber, Thomas; Tumani, Hayrettin; Holdorff, Bernd; Collinge, John; Palmer,
Mark; Kretzschmar, Hans A.; Felgenhauer, Klaus


Sir,- Creutzfeldt-Jakob disease (CJD) can be transmitted iatrogenically by
human pituitary growth hormone, corneal transplants, and dura mater grafts
(1). Possible accidental transmission has been reported in only four
people-a neurosurgeon (2), a pathologist (3), and two laboratory technicians
(4,5) . We have encountered an unusually rapid case of CJD probably acquired
through handling of sheep and human dura mater.
In May, 1992, a 55-year-old orthopaedic surgeon developed paraesthesia of
the left arm. A few days later he had spatial disorientation, apraxia, and
gait ataxia. In June he was admitted and a neurologist suspected CJD on the
basis of the clinical signs, typical electroencephalogram (EEG) pattern, and
history. An EEG in June revealed a typical pattern of periodic biphasic and
triphasic sharp wave complexes. We saw the patient in July, 1992. He was
awake and oriented, with dyscalculia, dysgraphia, disturbed vision, apraxia
mainly of the left side, rigidity of wrists, spasticity of all muscles,
myoclonus of the left arm, increased tendon reflexes, ataxia of limbs and
trunk, and incoordination of left arm. Within 3 weeks he had impaired
consciousness and attention, mildly impaired memory, and threatening visual
hallucinations with restless turning. He had periodic states with movements
of his head and eye-bulbs resembling tonic adversive seizures. During sleep
these motor disturbances stopped. 2 1/2 months later the patient died.

This patient had worked with sheep and human dura mater from 1968 to 1972.
He handled about 150 specimens of ovine origin and at least a dozen human
preparations for research. Handling involved opening skulls with a band saw,
removing dura, and testing them either fresh (usually), preserved, or
lyophilised for mechanical qualities. These specimens were sent to a company
that has sold dura mater preparations by which CJD was transmitted in six
instances. No information was available from the company about a possible
connection with this patient's disease and the earlier cases of transmitted
CJD. Brain biopsy was consistent with diagnosis of CJD. Cerebrospinal fluid
obtained in July showed neuron-specific enolase (NSE) at 82.0 ng/mL,
compared with 16.7 ng/mL in serum of other cases (6). Proton magnetic
resonance spectroscopy of parieto-occipital and temporal grey matter,
parietal white matter, and thalamus revealed a 20-30% reduction of
N-acetylaspartate, as described (7). DNA was genotyped with allele-specific
oligonucleotides (8) and was homozygous for methionine at the polymorphic
codon 129. Subsequent direct DNA sequencing for the PrP gene open-reading
frame demonstrated normal sequence on both alleles, excluding known or novel
pathogenic PrP mutations.

It is tempting to speculate that prions were transmitted to this patient
from sheep or human dura mater through small lacerations of his skin, but
the patient and his wife did not remember any significant injury during his
four years of working with these samples. It cannot be excluded that this
was a case of sporadic CJD although this assumption is unlikely in view of
the clinical course which was similar to iatrogenic CJD transmitted by
peripheral inoculation, such as with human pituitary growth hormone or
gonadotropin or to kuru (1). Iatrogenic cases resulting from intracerebral
inoculation with the transmissible agent, for instance following dura mater
grafts (2-5), present with a dementing picture, as is usual in sporadic CJD,
rather than with ataxia as in this case.


1. Brown P, Preece MA, Will RG. "Friendly fire" in medicine: hormones,
homografts, and Creutzfeldt-Jakob disease. Lancet 1992; 340: 24-27. [Medline
Link] [Context Link]

2. Schoene WC, Masters CL, Gibbs CJ Jr, et al. Transmissible spongiform
encephalopathy (Creutzfeldt-Jakob Disease): atypical clinical and
pathological findings. Arch Neurol 1981; 38: 473-77. [Medline Link] [Context
Link]

3. Gorman DG, Benson DF, Vogel DG, Vinters HV. Creutzfeldt-Jakob disease in
a pathologist. Neurology 1992; 42: 463. [Medline Link] [Context Link]

4. Miller DC. Creutzfeldt-Jakob disease in histopathology technicians. N
Engl J Med 1988; 318: 853-54. [Medline Link] [Context Link]

5. Sitwell L, Lach B, Atack E, Atack D, Izukawa D. Creutzfeldt-Jakob disease
in histopathology technicians. N Engl J Med 1988; 318: 854. [Medline Link]
[Context Link]

6. Wakayama Y, Shibuya S, Kawase J, Sagawa F, Hashizume Y. High
neuron-specific enolase level of cerebrospinal fluid in the early stage of
Creutzfeldt-Jakob disease. Klin Wochenschr 1987; 65: 798-801. [Medline Link]
[Context Link]

7. Bruhn H, Weber T, Thorwirth V, Frahm J. In-vivo monitoring of neuronal
loss in Creutzfeldt-Jakob disease by proton magnetic resonance spectroscopy.
Lancet 1991; 337: 1610-11. [Medline Link] [Context Link]

8. Collinge J, Palmer MS, Dryden AJ. Genetic predisposition to iatrogenic
Creutzfeldt-Jakob disease. Lancet 1991; 337: 1444-42. [Medlin


http://www.mad-cow.org/jul99_late_news.html#ggg





Follow Ups:



Post a Followup

Name:
E-mail: (optional)
Subject:

Comments:

Optional Link URL:
Link Title:
Optional Image URL: